

Solving linear and quadratic simultaneous equations

A LEVEL LINKS

Scheme of work: 1c. Equations – quadratic/linear simultaneous

Key points

- Make one of the unknowns the subject of the linear equation (rearranging where necessary).
- Use the linear equation to substitute into the quadratic equation.
- There are usually two pairs of solutions.

Examples

13
1

$x^2 + (x+1)^2 = 13$	1 Substitute $x + 1$ for y into the second equation
$x^{2} + x^{2} + x + x + 1 = 13$ $2x^{2} + 2x + 1 = 13$	2 Expand the brackets and simplify.
$2x^{2} + 2x - 12 = 0$ (2x - 4)(x + 3) = 0	3 Factorise the quadratic equation.
So x = 2 or x = -3	4 Work out the values of <i>x</i> .
Using $y = x + 1$ When $x = 2$, $y = 2 + 1 = 3$ When $x = -3$, $y = -3 + 1 = -2$	5 To find the value of <i>y</i> , substitute both values of <i>x</i> into one of the original equations.
So the solutions are $x = 2$, $y = 3$ and $x = -3$, $y = -2$	
Check: equation 1: $3 = 2 + 1$ YES and $-2 = -3 + 1$ YES	6 Substitute both pairs of values of <i>x</i> and <i>y</i> into both equations to check your answers.
equation 2: $2^2 + 3^2 = 13$ YES and $(-3)^2 + (-2)^2 = 13$ YES	

Example 2	Solve $2x + 3y = 5$ and $2y^2 + xy = 12$ simultaneously.
	······································

$x = \frac{5 - 3y}{2}$	1	1 Rearrange the first equation.		
$2y^2 + \left(\frac{5-3y}{2}\right)y = 12$	2	Substitute $\frac{5-3y}{2}$ for x into the		
$2y^{2} + \frac{5y - 3y^{2}}{2} = 12$ $4y^{2} + 5y - 3y^{2} = 24$	3	second equation. Notice how it is easier to substitute for <i>x</i> than for <i>y</i> . Expand the brackets and simplify.		
$y^{2} + 5y - 24 = 0$ (y + 8)(y - 3) = 0 So y = -8 or y = 3	4 5	Factorise the quadratic equation. Work out the values of <i>y</i> .		
Using $2x + 3y = 5$ When $y = -8$, $2x + 3 \times (-8) = 5$, $x = 14.5$ When $y = 3$, $2x + 3 \times 3 = 5$, $x = -2$	6	To find the value of <i>x</i> , substitute both values of <i>y</i> into one of the original equations.		
So the solutions are $x = 14.5$, $y = -8$ and $x = -2$, $y = 3$				
Check: equation 1: $2 \times 14.5 + 3 \times (-8) = 5$ YES and $2 \times (-2) + 3 \times 3 = 5$ YES equation 2: $2 \times (-8)^2 + 14.5 \times (-8) = 12$ YES and $2 \times (3)^2 + (-2) \times 3 = 12$ YES	7	Substitute both pairs of values of <i>x</i> and <i>y</i> into both equations to check your answers.		

Practice

Solve these simultaneous equations.

1	$y = 2x + 1$ $x^2 + y^2 = 10$	2	$y = 6 - x$ $x^2 + y^2 = 20$
3	$y = x - 3$ $x^2 + y^2 = 5$	4	$y = 9 - 2x$ $x^2 + y^2 = 17$
5	$y = 3x - 5$ $y = x^2 - 2x + 1$	6	$y = x - 5$ $y = x^2 - 5x - 12$
7	$y = x + 5$ $x^2 + y^2 = 25$	8	$y = 2x - 1$ $x^2 + xy = 24$
9	$y = 2x$ $y^2 - xy = 8$	10	2x + y = 11 $xy = 15$

Extend

11	x - y = 1	12	y - x = 2
	$x^2 + y^2 = 3$		$x^2 + xy = 3$

Answers

x = 1, y = 31 $x = -\frac{9}{5}, y = -\frac{13}{5}$ 2 x = 2, y = 4x = 4, y = 23 x = 1, y = -2x = 2, y = -14 x = 4, y = 1 $x = \frac{16}{5}, y = \frac{13}{5}$ 5 x = 3, y = 4x = 2, y = 16 x = 7, y = 2x = -1, y = -67 x = 0, y = 5x = -5, y = 08 $x = -\frac{8}{3}, y = -\frac{19}{3}$ x = 3, y = 59 x = -2, y = -4x = 2, y = 4**10** $x = \frac{5}{2}, y = 6$ x = 3, y = 511 $x = \frac{1+\sqrt{5}}{2}, y = \frac{-1+\sqrt{5}}{2}$ $x = \frac{1-\sqrt{5}}{2}, y = \frac{-1-\sqrt{5}}{2}$ 12 $x = \frac{-1 + \sqrt{7}}{2}, y = \frac{3 + \sqrt{7}}{2}$ $x = \frac{-1 - \sqrt{7}}{2}, y = \frac{3 - \sqrt{7}}{2}$