

Circle theorems

A LEVEL LINKS

Scheme of work: 2b. Circles – equation of a circle, geometric problems on a grid

Key points

 A chord is a straight line joining two points on the circumference of a circle.
 So AB is a chord.

• A tangent is a straight line that touches the circumference of a circle at only one point.

The angle between a tangent and the radius is 90°.

 Two tangents on a circle that meet at a point outside the circle are equal in length.
 So AC = BC.

• The angle in a semicircle is a right angle. So angle $ABC = 90^{\circ}$.

When two angles are subtended by the same arc, the angle at the centre of a circle is twice the angle at the circumference.
 So angle AOB = 2 × angle ACB.

Angles subtended by the same arc at the circumference are equal. This means that angles in the same segment are equal.
 So angle ACB = angle ADB and angle CAD = angle CBD.

A cyclic quadrilateral is a quadrilateral with all four vertices on the circumference of a circle.
 Opposite angles in a cyclic quadrilateral total 180°.
 So x + y = 180° and p + q = 180°.

 The angle between a tangent and chord is equal to the angle in the alternate segment, this is known as the alternate segment theorem.
 So angle BAT = angle ACB.

Examples

Example 1

Work out the size of each angle marked with a letter. Give reasons for your answers.

Angle
$$a = 360^{\circ} - 92^{\circ}$$

= 268°

as the angles in a full turn total 360° .

Angle
$$b = 268^{\circ} \div 2$$

= 134°

as when two angles are subtended by the same arc, the angle at the centre of a circle is twice the angle at the circumference.

1 The angles in a full turn total 360°.

2 Angles *a* and *b* are subtended by the same arc, so angle *b* is half of angle *a*.

Example 2 Work out the size of the angles in the triangle. Give reasons for your answers.

Angles are 90° , 2c and c.

$$90^{\circ} + 2c + c = 180^{\circ}$$

 $90^{\circ} + 3c = 180^{\circ}$
 $3c = 90^{\circ}$
 $c = 30^{\circ}$
 $2c = 60^{\circ}$

The angles are 30°, 60° and 90° as the angle in a semi-circle is a right angle and the angles in a triangle total 180°.

- 1 The angle in a semicircle is a right angle.
- 2 Angles in a triangle total 180° .
- 3 Simplify and solve the equation.

Example 3 Work out the size of each angle marked with a letter. Give reasons for your answers.

Angle $d = 55^{\circ}$ as angles subtended by the same arc are equal.

Angle $e = 28^{\circ}$ as angles subtended by the same arc are equal.

- 1 Angles subtended by the same arc are equal so angle 55° and angle d are equal.
- 2 Angles subtended by the same arc are equal so angle 28° and angle e are equal.
- **Example 4** Work out the size of each angle marked with a letter. Give reasons for your answers.

Angle
$$f = 180^{\circ} - 94^{\circ}$$

= 86°
as opposite angles in a cyclic
quadrilateral total 180°.

Opposite angles in a cyclic quadrilateral total 180° so angle 94° and angle f total 180°.

(continued on next page)

Angle
$$g = 180^{\circ} - 86^{\circ}$$

= 84°

as angles on a straight line total 180°.

Angle $h = \text{angle } f = 86^{\circ}$ as angles subtended by the same arc are equal.

- 2 Angles on a straight line total 180° so angle f and angle g total 180° .
- **3** Angles subtended by the same arc are equal so angle *f* and angle *h* are equal.

Example 5 Work out the size of each angle marked with a letter. Give reasons for your answers.

Angle $i = 53^{\circ}$ because of the alternate segment theorem.

Angle $j = 53^{\circ}$ because it is the alternate angle to 53° .

Angle
$$k = 180^{\circ} - 53^{\circ} - 53^{\circ}$$

= 74°
as angles in a triangle total 180°.

- 1 The angle between a tangent and chord is equal to the angle in the alternate segment.
- 2 As there are two parallel lines, angle 53° is equal to angle *j* because they are alternate angles.
- 3 The angles in a triangle total 180°, so i + j + k = 180°.
- Example 6 XZ and YZ are two tangents to a circle with centre O. Prove that triangles XZO and YZO are congruent.

Angle OXZ = 90° and angle OYZ = 90° as the angles in a semicircle are right angles.

OZ is a common line and is the hypotenuse in both triangles.

OX = OY as they are radii of the same circle.

So triangles XZO and YZO are congruent, RHS.

For two triangles to be congruent you need to show one of the following.

- All three corresponding sides are equal (SSS).
- Two corresponding sides and the included angle are equal (SAS).
- One side and two corresponding angles are equal (ASA).
- A right angle, hypotenuse and a shorter side are equal (RHS).

Practice

Work out the size of each angle marked with a letter. Give reasons for your answers.

a

b

c

d

e

Work out the size of each angle marked with a letter. Give reasons for your answers.

a

b

 \mathbf{c}

Hint

The reflex angle at point O and angle g are subtended by the same arc. So the reflex angle is twice the size of angle g.

d

Hint

Angle 18° and angle h are subtended by the same arc.

Work out the size of each angle marked with a letter. Give reasons for your answers.

a

b

Hint

One of the angles is in a semicircle.

c

d

Work out the size of each angle marked with a letter. Give reasons for your answers.

a

Hint

An exterior angle of a cyclic quadrilateral is equal to the opposite interior angle.

b

 \mathbf{c}

d

Hint

One of the angles is in a semicircle.

Extend

5 Prove the alternate segment theorem.

Answers

- **1** a $a = 112^{\circ}$, angle OAP = angle OBP = 90° and angles in a quadrilateral total 360°.
 - **b** $b = 66^{\circ}$, triangle OAB is isosceles, Angle OAP = 90° as AP is tangent to the circle.
 - $c = 126^{\circ}$, triangle OAB is isosceles.
 - $d = 63^{\circ}$, Angle OBP = 90° as BP is tangent to the circle.
 - **d** $e = 44^{\circ}$, the triangle is isosceles, so angles e and angle OBA are equal. The angle OBP = 90° as BP is tangent to the circle.
 - $f = 92^{\circ}$, the triangle is isosceles.
 - e $g = 62^{\circ}$, triangle ABP is isosceles as AP and BP are both tangents to the circle.
 - $h = 28^{\circ}$, the angle OBP = 90° .
- **2 a** $a = 130^{\circ}$, angles in a full turn total 360°.
 - $b = 65^{\circ}$, the angle at the centre of a circle is twice the angle at the circumference.
 - $c = 115^{\circ}$, opposite angles in a cyclic quadrilateral total 180°.
 - **b** $d = 36^{\circ}$, isosceles triangle.
 - $e = 108^{\circ}$, angles in a triangle total 180°.
 - $f = 54^{\circ}$, angle in a semicircle is 90°.
 - c $g = 127^{\circ}$, angles at a full turn total 360°, the angle at the centre of a circle is twice the angle at the circumference.
 - **d** $h = 36^{\circ}$, the angle at the centre of a circle is twice the angle at the circumference.
- 3 **a** $a = 25^{\circ}$, angles in the same segment are equal.
 - $b = 45^{\circ}$, angles in the same segment are equal.
 - **b** $c = 44^{\circ}$, angles in the same segment are equal.
 - $d = 46^{\circ}$, the angle in a semicircle is 90° and the angles in a triangle total 180°.
 - $e = 48^{\circ}$, the angle at the centre of a circle is twice the angle at the circumference.
 - $f = 48^{\circ}$, angles in the same segment are equal.
 - **d** $g = 100^{\circ}$, angles at a full turn total 360°, the angle at the centre of a circle is twice the angle at the circumference.
 - $h = 100^{\circ}$, angles in the same segment are equal.
- **4 a** $a = 75^{\circ}$, opposite angles in a cyclic quadrilateral total 180°.
 - $b = 105^{\circ}$, angles on a straight line total 180°.
 - $c = 94^{\circ}$, opposite angles in a cyclic quadrilateral total 180°.
 - **b** $d = 92^{\circ}$, opposite angles in a cyclic quadrilateral total 180°.
 - $e = 88^{\circ}$, angles on a straight line total 180°.
 - $f = 92^{\circ}$, angles in the same segment are equal.
 - c $h = 80^{\circ}$, alternate segment theorem.
 - **d** $g = 35^{\circ}$, alternate segment theorem and the angle in a semicircle is 90°.

5 Angle BAT = x.

Angle OAB = $90^{\circ} - x$ because the angle between the tangent and the radius is 90° .

OA = OB because radii are equal.

Angle OAB = angle OBA because the base of isosceles triangles are equal.

Angle AOB =
$$180^{\circ} - (90^{\circ} - x) - (90^{\circ} - x) = 2x$$

because angles in a triangle total 180° .

Angle ACB = $2x \div 2 = x$ because the angle at the centre is twice the angle at the circumference.

