Circle theorems

A LEVEL LINKS

Scheme of work: 2 b . Circles - equation of a circle, geometric problems on a grid

Key points

- A chord is a straight line joining two points on the circumference of a circle.
So AB is a chord.

- A tangent is a straight line that touches the circumference of a circle at only one point. The angle between a tangent and the radius is 90°.

- Two tangents on a circle that meet at a point outside the circle are equal in length.
So $A C=B C$.

- The angle in a semicircle is a right angle. So angle $\mathrm{ABC}=90^{\circ}$.

- When two angles are subtended by the same arc, the angle at the centre of a circle is twice the angle at the circumference.
So angle $\mathrm{AOB}=2 \times$ angle ACB .

- Angles subtended by the same arc at the circumference are equal. This means that angles in the same segment are equal.
So angle $\mathrm{ACB}=$ angle ADB and angle $\mathrm{CAD}=$ angle CBD .

- A cyclic quadrilateral is a quadrilateral with all four vertices on the circumference of a circle. Opposite angles in a cyclic quadrilateral total 180°. So $x+y=180^{\circ}$ and $p+q=180^{\circ}$.

- The angle between a tangent and chord is equal to the angle in the alternate segment, this is known as the alternate segment theorem.
So angle $\mathrm{BAT}=$ angle ACB .

Examples

Example 1 Work out the size of each angle marked with a letter.
Give reasons for your answers.

$$
\text { Angle } \begin{aligned}
a & =360^{\circ}-92^{\circ} \\
& =268^{\circ}
\end{aligned}
$$

as the angles in a full turn total 360°.
Angle $b=268^{\circ} \div 2$

$$
=134^{\circ}
$$

as when two angles are subtended by the same arc, the angle at the centre of a circle is twice the angle at the circumference.

1 The angles in a full turn total 360°.

2 Angles a and b are subtended by the same arc, so angle b is half of angle a.

Example 2 Work out the size of the angles in the triangle.
Give reasons for your answers.

Angles are $90^{\circ}, 2 c$ and c.

$$
\begin{aligned}
90^{\circ}+2 c+c & =180^{\circ} \\
90^{\circ}+3 c & =180^{\circ} \\
3 c & =90^{\circ} \\
c & =30^{\circ} \\
2 c & =60^{\circ}
\end{aligned}
$$

The angles are $30^{\circ}, 60^{\circ}$ and 90° as the angle in a semi-circle is a right angle and the angles in a triangle total 180°.

1 The angle in a semicircle is a right angle.

2 Angles in a triangle total 180°.
3 Simplify and solve the equation.

Example 3 Work out the size of each angle marked with a letter. Give reasons for your answers.

Angle $d=55^{\circ}$ as angles subtended by the same arc are equal.

Angle $e=28^{\circ}$ as angles subtended by the same arc are equal.

1 Angles subtended by the same arc are equal so angle 55° and angle d are equal.
2 Angles subtended by the same arc are equal so angle 28° and angle e are equal.

Example 4 Work out the size of each angle marked with a letter. Give reasons for your answers.

$$
\begin{aligned}
\text { Angle } f & =180^{\circ}-94^{\circ} \\
& =86^{\circ}
\end{aligned}
$$

as opposite angles in a cyclic quadrilateral total 180°.

1 Opposite angles in a cyclic quadrilateral total 180° so angle 94° and angle f total 180°.

$$
\begin{aligned}
\text { Angle } \begin{aligned}
g & =180^{\circ}-86^{\circ} \\
& =84^{\circ}
\end{aligned}, \quad \text {. }
\end{aligned}
$$

as angles on a straight line total 180°.
Angle $h=$ angle $f=86^{\circ}$ as angles subtended by the same arc are equal.

2 Angles on a straight line total 180° so angle f and angle g total 180°.

3 Angles subtended by the same arc are equal so angle f and angle h are equal.

Example 5 Work out the size of each angle marked with a letter. Give reasons for your answers.

Angle $i=53^{\circ}$ because of the alternate segment theorem.

Angle $j=53^{\circ}$ because it is the alternate angle to 53°.

Angle $k=180^{\circ}-53^{\circ}-53^{\circ}$

$$
=74^{\circ}
$$

as angles in a triangle total 180°.

1 The angle between a tangent and chord is equal to the angle in the alternate segment.
2 As there are two parallel lines, angle 53° is equal to angle j because they are alternate angles.
3 The angles in a triangle total 180°, so $i+j+k=180^{\circ}$.

Example $6 \quad \mathrm{XZ}$ and YZ are two tangents to a circle with centre O. Prove that triangles XZO and YZO are congruent.

Angle $\mathrm{OXZ}=90^{\circ}$ and angle $\mathrm{OYZ}=90^{\circ}$ as the angles in a semicircle are right angles.

OZ is a common line and is the hypotenuse in both triangles.
$\mathrm{OX}=\mathrm{OY}$ as they are radii of the same circle.

So triangles XZO and YZO are congruent, RHS.

For two triangles to be congruent you need to show one of the following.

- All three corresponding sides are equal (SSS).
- Two corresponding sides and the included angle are equal (SAS).
- One side and two corresponding angles are equal (ASA).
- A right angle, hypotenuse and a shorter side are equal (RHS).

Practice

1 Work out the size of each angle marked with a letter.
Give reasons for your answers.
a

b

c

d

e

Work out the size of each angle marked with a letter.
Give reasons for your answers.
a

b

c

Hint

The reflex angle at point O and angle g are subtended by the same arc. So the reflex angle is twice the size of angle g.
d

Hint
Angle 18° and angle h are subtended by the same arc.

3 Work out the size of each angle marked with a letter.
Give reasons for your answers.
a

b

Hint

One of the angles is in a semicircle.
c

d

4 Work out the size of each angle marked with a letter.
Give reasons for your answers.
a

Hint

An exterior angle of a cyclic quadrilateral is equal to the opposite interior angle.
b

c

d

Hint

One of the angles is in a semicircle.

Extend

Prove the alternate segment theorem.

Answers

1 a $a=112^{\circ}$, angle $\mathrm{OAP}=$ angle $\mathrm{OBP}=90^{\circ}$ and angles in a quadrilateral total 360°.
b $b=66^{\circ}$, triangle OAB is isosceles, Angle $\mathrm{OAP}=90^{\circ}$ as AP is tangent to the circle.
c $c=126^{\circ}$, triangle OAB is isosceles.
$d=63^{\circ}$, Angle $\mathrm{OBP}=90^{\circ}$ as BP is tangent to the circle.
d $e=44^{\circ}$, the triangle is isosceles, so angles e and angle OBA are equal. The angle $\mathrm{OBP}=90^{\circ}$ as BP is tangent to the circle.
$f=92^{\circ}$, the triangle is isosceles.
e $g=62^{\circ}$, triangle ABP is isosceles as AP and BP are both tangents to the circle.
$h=28^{\circ}$, the angle OBP $=90^{\circ}$.
2 a $a=130^{\circ}$, angles in a full turn total 360°.
$b=65^{\circ}$, the angle at the centre of a circle is twice the angle at the circumference.
$c=115^{\circ}$, opposite angles in a cyclic quadrilateral total 180°.
b $d=36^{\circ}$, isosceles triangle.
$e=108^{\circ}$, angles in a triangle total 180°.
$f=54^{\circ}$, angle in a semicircle is 90°.
c $g=127^{\circ}$, angles at a full turn total 360°, the angle at the centre of a circle is twice the angle at the circumference.
d $h=36^{\circ}$, the angle at the centre of a circle is twice the angle at the circumference.

3 a $a=25^{\circ}$, angles in the same segment are equal.
$b=45^{\circ}$, angles in the same segment are equal.
b $c=44^{\circ}$, angles in the same segment are equal.
$d=46^{\circ}$, the angle in a semicircle is 90° and the angles in a triangle total 180°.
c $e=48^{\circ}$, the angle at the centre of a circle is twice the angle at the circumference.
$f=48^{\circ}$, angles in the same segment are equal.
d $g=100^{\circ}$, angles at a full turn total 360°, the angle at the centre of a circle is twice the angle at the circumference.
$h=100^{\circ}$, angles in the same segment are equal.

4 a $a=75^{\circ}$, opposite angles in a cyclic quadrilateral total 180°.
$b=105^{\circ}$, angles on a straight line total 180°.
$c=94^{\circ}$, opposite angles in a cyclic quadrilateral total 180°.
b $d=92^{\circ}$, opposite angles in a cyclic quadrilateral total 180°.
$e=88^{\circ}$, angles on a straight line total 180°.
$f=92^{\circ}$, angles in the same segment are equal.
c $h=80^{\circ}$, alternate segment theorem.
d $g=35^{\circ}$, alternate segment theorem and the angle in a semicircle is 90°.

5 Angle $\mathrm{BAT}=x$
Angle $\mathrm{OAB}=90^{\circ}-x$ because the angle between the tangent and the radius is 90°.
$\mathrm{OA}=\mathrm{OB}$ because radii are equal.
Angle $\mathrm{OAB}=$ angle OBA because the base of isosceles triangles are equal.
Angle $\mathrm{AOB}=180^{\circ}-\left(90^{\circ}-x\right)-\left(90^{\circ}-x\right)=2 x$

because angles in a triangle total 180°.
Angle $\mathrm{ACB}=2 x \div 2=x$ because the angle at the centre is twice the angle at the circumference.

