

Surds and rationalising the denominator

A LEVEL LINKS

Scheme of work: 1a. Algebraic expressions - basic algebraic manipulation, indices and surds

Key points

- A surd is the square root of a number that is not a square number, for example $\sqrt{2}$, $\sqrt{3}$, $\sqrt{5}$, etc.
- Surds can be used to give the exact value for an answer.
- $\sqrt{ab} = \sqrt{a} \times \sqrt{b}$
- $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$
- To rationalise the denominator means to remove the surd from the denominator of a fraction.
- To rationalise $\frac{a}{\sqrt{b}}$ you multiply the numerator and denominator by the surd \sqrt{b}
- To rationalise $\frac{a}{b+\sqrt{c}}$ you multiply the numerator and denominator by $b-\sqrt{c}$

Examples

Example 1 Simplify $\sqrt{50}$

$\sqrt{50} = \sqrt{25 \times 2}$	1 Choose two numbers that are factors of 50. One of the factors must be a square number
$=\sqrt{25}\times\sqrt{2}$	2 Use the rule $\sqrt{ab} = \sqrt{a} \times \sqrt{b}$
$=5 \times \sqrt{2}$	3 Use $\sqrt{25} = 5$
$=5\sqrt{2}$	

Example 2 Simplify $\sqrt{147} - 2\sqrt{12}$

$\sqrt{147} - 2\sqrt{12}$ $= \sqrt{49 \times 3} - 2\sqrt{4 \times 3}$	1 Simplify $\sqrt{147}$ and $2\sqrt{12}$. Choose two numbers that are factors of 147 and two numbers that are factors of 12. One of each pair of factors must be a square number
$=\sqrt{49}\times\sqrt{3}-2\sqrt{4}\times\sqrt{3}$	2 Use the rule $\sqrt{ab} = \sqrt{a} \times \sqrt{b}$
$=7\times\sqrt{3}-2\times2\times\sqrt{3}$	3 Use $\sqrt{49} = 7$ and $\sqrt{4} = 2$
$= 7\sqrt{3} - 4\sqrt{3}$ $= 3\sqrt{3}$	4 Collect like terms

Example 3 Simplify $(\sqrt{7} + \sqrt{2})(\sqrt{7} - \sqrt{2})$

$ \left(\sqrt{7} + \sqrt{2} \right) \left(\sqrt{7} - \sqrt{2} \right) = \sqrt{49} - \sqrt{7} \sqrt{2} + \sqrt{2} \sqrt{7} - \sqrt{4} $	1 Expand the brackets. A common mistake here is to write $(\sqrt{7})^2 = 49$
= 7 - 2	2 Collect like terms:
= 5	$-\sqrt{7}\sqrt{2} + \sqrt{2}\sqrt{7}$ $= -\sqrt{7}\sqrt{2} + \sqrt{7}\sqrt{2} = 0$

Example 4 Rationalise $\frac{1}{\sqrt{3}}$

$\frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$	1 Multiply the numerator and denominator by $\sqrt{3}$
$=\frac{1\times\sqrt{3}}{\sqrt{9}}$	2 Use $\sqrt{9} = 3$
$=\frac{\sqrt{3}}{3}$	

Example 5 Rationalise and simplify $\frac{\sqrt{2}}{\sqrt{12}}$

$$\frac{\sqrt{2}}{\sqrt{12}} = \frac{\sqrt{2}}{\sqrt{12}} \times \frac{\sqrt{12}}{\sqrt{12}}$$

$$= \frac{\sqrt{2} \times \sqrt{4 \times 3}}{12}$$

$$= \frac{\sqrt{2} \times \sqrt{4 \times 3}}{12}$$

$$= \frac{\sqrt{2} \times \sqrt{4 \times 3}}{12}$$

$$= \frac{\sqrt{2} \sqrt{2} \sqrt{3}}{12}$$

$$= \frac{\sqrt{2} \sqrt{2} \sqrt{3}}{6}$$

$$\frac{\sqrt{2} \sqrt{3}}{6}$$

$$\frac{1}{2}$$
Multiply the numerator and denominator by $\sqrt{12}$

$$\frac{1}{2}$$
Simplify $\sqrt{12}$ in the numerator. Choose two numbers that are factors of 12. One of the factors must be a square number}
$$\frac{3}{4}$$
Use the rule $\sqrt{ab} = \sqrt{a} \times \sqrt{b}$

$$\frac{4}{5}$$
Use $\sqrt{4} = 2$

$$\frac{2}{12}$$
Simplify the fraction: $\frac{2}{12}$ simplifies to $\frac{1}{6}$

Example 6 Rationalise and simplify $\frac{3}{2+\sqrt{5}}$

$\frac{3}{2+\sqrt{5}} = \frac{3}{2+\sqrt{5}} \times \frac{2-\sqrt{5}}{2-\sqrt{5}}$	1 Multiply the numerator and denominator by $2 - \sqrt{5}$
$=\frac{3\left(2-\sqrt{5}\right)}{\left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right)}$	2 Expand the brackets
$=\frac{6-3\sqrt{5}}{4+2\sqrt{5}-2\sqrt{5}-5}$	3 Simplify the fraction
$=\frac{6-3\sqrt{5}}{-1}$ $=3\sqrt{5}-6$	 4 Divide the numerator by −1 Remember to change the sign of all terms when dividing by −1

Practice

2

1	Simp	lify.			Hint	
	a	$\sqrt{45}$	b	$\sqrt{125}$	One of the two	
	c	$\sqrt{48}$	d	$\sqrt{175}$	numbers you choose at the start	
	e	$\sqrt{300}$	f	$\sqrt{28}$	must be a square	
	g	$\sqrt{72}$	h	$\sqrt{162}$	number.	

Sin	nplify.		
a	$\sqrt{72} + \sqrt{162}$	b	$\sqrt{45}-2\sqrt{5}$
c	$\sqrt{50} - \sqrt{8}$	d	$\sqrt{75} - \sqrt{48}$
e	$2\sqrt{28} + \sqrt{28}$	f	$2\sqrt{12} - \sqrt{12} + \sqrt{27}$

Watch out!

Γ

Check you have chosen the highest square number at the start.

3	Expand and simplify.

a $(\sqrt{2} + \sqrt{3})(\sqrt{2} - \sqrt{3})$ **c** $(4 - \sqrt{5})(\sqrt{45} + 2)$ **b** $(3+\sqrt{3})(5-\sqrt{12})$ **d** $(5+\sqrt{2})(6-\sqrt{8})$

4 Rationalise and simplify, if possible.

a
$$\frac{1}{\sqrt{5}}$$
b $\frac{1}{\sqrt{11}}$ c $\frac{2}{\sqrt{7}}$ d $\frac{2}{\sqrt{8}}$ e $\frac{2}{\sqrt{2}}$ f $\frac{5}{\sqrt{5}}$ g $\frac{\sqrt{8}}{\sqrt{24}}$ h $\frac{\sqrt{5}}{\sqrt{45}}$

5 Rationalise and simplify.

a
$$\frac{1}{3-\sqrt{5}}$$
 b $\frac{2}{4+\sqrt{3}}$ **c** $\frac{6}{5-\sqrt{2}}$

Extend

- 6 Expand and simplify $(\sqrt{x} + \sqrt{y})(\sqrt{x} \sqrt{y})$
- 7 Rationalise and simplify, if possible.

a
$$\frac{1}{\sqrt{9}-\sqrt{8}}$$
 b $\frac{1}{\sqrt{x}-\sqrt{y}}$

Answers

1	a	3√5	b	5√5		
	c	4√3	d	5√7		
	e	10√3	f	2√7		
	g	6√2	h	9√2		
2	а	15√2	b	$\sqrt{5}$		
-		$3\sqrt{2}$		$\sqrt{3}$		
		6√7		5√3		
	C	047	•	345		
3	a	-1	b	$9 - \sqrt{3}$		
		$10\sqrt{5}-7$		$26 - 4\sqrt{2}$		
				·		
4	a	$\frac{\sqrt{5}}{5}$ $\frac{2\sqrt{7}}{7}$ $\sqrt{2}$ $\frac{\sqrt{3}}{3}$	b	$\frac{\sqrt{11}}{11}$		
		5		11 5		
	c	$\frac{2\sqrt{7}}{7}$	d	$\frac{\sqrt{2}}{2}$		
	e	$\sqrt{2}$	f	√5		
	g	$\sqrt{3}$	h	$\frac{1}{3}$		
	ъ	3		3		
5		$\frac{3+\sqrt{5}}{4}$	b	$\frac{2(4-\sqrt{3})}{13}$	c	$\frac{6(5+\sqrt{2})}{23}$
6	<i>x</i> –					

7 a
$$3+2\sqrt{2}$$
 b $\frac{\sqrt{x}+\sqrt{y}}{x-y}$