

Rearranging equations

A LEVEL LINKS

Scheme of work: 6a. Definition, differentiating polynomials, second derivatives **Textbook:** Pure Year 1, 12.1 Gradients of curves

Key points

- To change the subject of a formula, get the terms containing the subject on one side and everything else on the other side.
- You may need to factorise the terms containing the new subject.

Examples

$\iota + at$.

v = u + at $v - u = at$	1 Get the terms containing <i>t</i> on one side and everything else on the other side.
$t = \frac{v - u}{a}$	2 Divide throughout by <i>a</i> .

Example 2 Make *t* the subject of the formula $r = 2t - \pi t$.

$r=2t-\pi t$	1 All the terms containing <i>t</i> are already on one side and everything else is on the other side
$r = t(2 - \pi)$	2 Factorise as <i>t</i> is a common factor.
$t = \frac{7}{2 - \pi}$	3 Divide throughout by $2 - \pi$.

Example 3 Make *t* the subject of the formula $\frac{t+r}{5} = \frac{3t}{2}$.

$\frac{t+r}{5} = \frac{3t}{2}$	1 Remove the fractions first by multiplying throughout by 10.
2t + 2r = 15t $2r = 13t$	2 Get the terms containing <i>t</i> on one side and everything else on the other side and simplify.
$t = \frac{2r}{13}$	3 Divide throughout by 13.

Example 4	Make t the subject of the formula r	$=\frac{3t+5}{t-1}$.
L	5	t-1

$r = \frac{3t+5}{t-1}$	1 Remove the fraction first by multiplying throughout by $t - 1$.
r(t-1) = 3t + 5	2 Expand the brackets.
rt - r = 3t + 5 $rt - 3t = 5 + r$	3 Get the terms containing <i>t</i> on one side and everything else on the other side.
t(r-3) = 5 + r	4 Factorise the LHS as <i>t</i> is a common factor
$t = \frac{5+r}{r-3}$	5 Divide throughout by $r - 3$.

Practice

Change the subject of each formula to the letter given in the brackets.

 $C = \pi d$ [d] P = 2l + 2w [w] $D = \frac{S}{T}$ [T] $p = \frac{q - r}{t}$ [t] $u = at - \frac{1}{2}t$ [t] V = ax + 4x [x] $\frac{y - 7x}{2} = \frac{7 - 2y}{3}$ [y] $x = \frac{2a - 1}{3 - a}$ [a] $x = \frac{b - c}{d}$ [d] $h = \frac{7g - 9}{2 + g}$ [g] e(9 + x) = 2e + 1 [e] $y = \frac{2x + 3}{4 - x}$ [x]

13 Make *r* the subject of the following formulae.

a $A = \pi r^2$ **b** $V = \frac{4}{3}\pi r^3$ **c** $P = \pi r + 2r$ **d** $V = \frac{2}{3}\pi r^2 h$

14 Make *x* the subject of the following formulae.

a
$$\frac{xy}{z} = \frac{ab}{cd}$$
 b $\frac{4\pi cx}{d} = \frac{3z}{py^2}$

15 Make sin *B* the subject of the formula $\frac{a}{\sin A} = \frac{b}{\sin B}$

16 Make $\cos B$ the subject of the formula $b^2 = a^2 + c^2 - 2ac \cos B$.

Extend

- 17 Make *x* the subject of the following equations.
 - **a** $\frac{p}{q}(sx+t) = x-1$ **b** $\frac{p}{q}(ax+2y) = \frac{3p}{q^2}(x-y)$

Answers

- 1 $d = \frac{C}{\pi}$ 5 $t = \frac{2u}{2a-1}$ 6 $x = \frac{V}{a+4}$ 4 $t = \frac{q-r}{p}$ 8 $a = \frac{3x+1}{x+2}$ 9 $d = \frac{b-c}{x}$ **7** y = 2 + 3x**10** $g = \frac{2h+9}{7-h}$ **11** $e = \frac{1}{x+7}$ **12** $x = \frac{4y-3}{2+y}$ 13 a $r = \sqrt{\frac{A}{\pi}}$ b $r = \sqrt[3]{\frac{3V}{4\pi}}$ **c** $r = \frac{P}{\pi + 2}$ **d** $r = \sqrt{\frac{3V}{2\pi h}}$ 14 a $x = \frac{abz}{cdy}$ b $x = \frac{3dz}{4\pi cny^2}$ 15 $\sin B = \frac{b \sin A}{a}$ 16 $\cos B = \frac{a^2 + c^2 - b^2}{2ac}$
- **17 a** $x = \frac{q + pt}{q ps}$ **b** $x = \frac{3py + 2pqy}{3p apq} = \frac{y(3 + 2q)}{3 aq}$