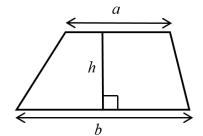
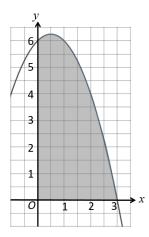

Area under a graph

A LEVEL LINKS


Scheme of work: 7b. Definite integrals and areas under curves

Key points

 To estimate the area under a curve, draw a chord between the two points you are finding the area between and straight lines down to the horizontal axis to create a trapezium.
 The area of the trapezium is an approximation for the area under a curve.



• The area of a trapezium = $\frac{1}{2}h(a+b)$

Examples

Example 1 Estimate the area of the region between the curve y = (3 - x)(2 + x) and the *x*-axis from x = 0 to x = 3. Use three strips of width 1 unit.

x	0	1	2	3
y = (3-x)(2+x)	6	6	4	0

Trapezium 1:

$$a_1 = 6 - 0 = 6$$
, $b_1 = 6 - 0 = 6$

Trapezium 2:

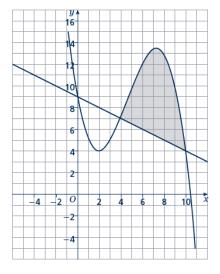
$$a_2 = 6 - 0 = 6$$
, $b_2 = 4 - 0 = 4$

Trapezium 3:

$$a_3 = 4 - 0 = 4$$
, $a_3 = 0 - 0 = 0$

- Use a table to record the value of *y* on the curve for each value of *x*.
- 2 Work out the dimensions of each trapezium. The distances between the *y*-values on the curve and the *x*-axis give the values for *a*.

(continued on next page)


$$\frac{1}{2}h(a_1 + b_1) = \frac{1}{2} \times 1(6+6) = 6$$
$$\frac{1}{2}h(a_2 + b_2) = \frac{1}{2} \times 1(6+4) = 5$$
$$\frac{1}{2}h(a_3 + b_3) = \frac{1}{2} \times 1(4+0) = 2$$

Area = 6 + 5 + 2 = 13 units²

3 Work out the area of each trapezium. h = 1 since the width of each trapezium is 1 unit.

4 Work out the total area. Remember to give units with your answer.

Example 2 Estimate the shaded area.
Use three strips of width 2 units.

x	4	6	8	10
y	7	12	13	4

x	4	6	8	10
y	7	6	5	4

Trapezium 1:

$$a_1 = 7 - 7 = 0$$
, $b_1 = 12 - 6 = 6$

Trapezium 2:

$$a_2 = 12 - 6 = 6$$
, $b_2 = 13 - 5 = 8$

Trapezium 3:

$$a_3 = 13 - 5 = 8$$
, $a_3 = 4 - 4 = 0$

$$\frac{1}{2}h(a_1 + b_1) = \frac{1}{2} \times 2(0+6) = 6$$

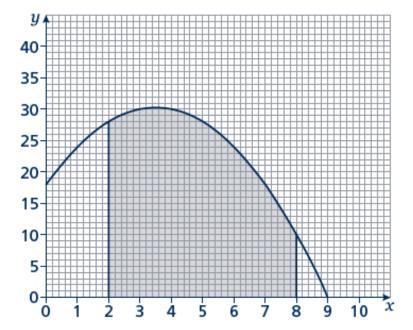
$$\frac{1}{2}h(a_2 + b_2) = \frac{1}{2} \times 2(6+8) = 14$$

$$\frac{1}{2}h(a_3 + b_3) = \frac{1}{2} \times 2(8+0) = 8$$

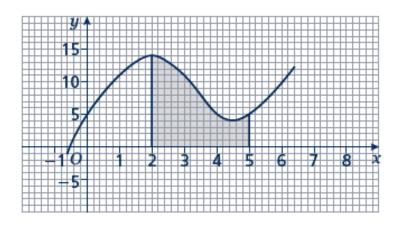
Area =
$$6 + 14 + 8 = 28$$
 units²

- 1 Use a table to record *y* on the curve for each value of *x*.
- 2 Use a table to record y on the straight line for each value of x.
- 3 Work out the dimensions of each trapezium. The distances between the *y*-values on the curve and the *y*-values on the straight line give the values for *a*.
- 4 Work out the area of each trapezium. h = 2 since the width of each trapezium is 2 units.
- 5 Work out the total area. Remember to give units with your answer.

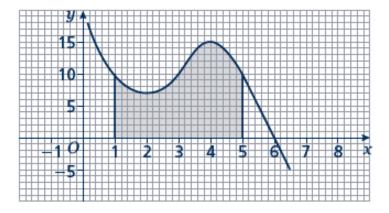
Practice

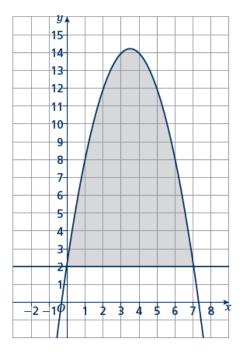

Estimate the area of the region between the curve y = (5 - x)(x + 2) and the x-axis from x = 1 to x = 5. Use four strips of width 1 unit.

Hint:

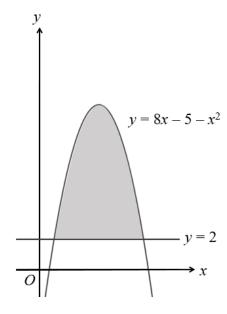

For a full answer, remember to include 'units²'.

2 Estimate the shaded area shown on the axes.

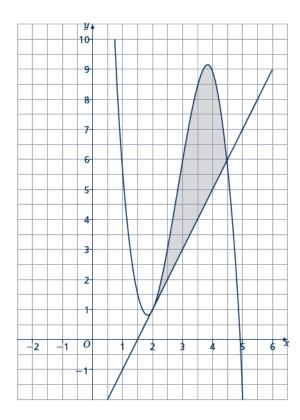

Use six strips of width 1 unit.


- 3 Estimate the area of the region between the curve $y = x^2 8x + 18$ and the x-axis from x = 2 to x = 6. Use four strips of width 1 unit.
- 4 Estimate the shaded area. Use six strips of width $\frac{1}{2}$ unit.

- 5 Estimate the area of the region between the curve $y = -x^2 4x + 5$ and the *x*-axis from x = -5 to x = 1. Use six strips of width 1 unit.
- **6** Estimate the shaded area. Use four strips of equal width.



- Estimate the area of the region between the curve $y = -x^2 + 2x + 15$ and the x-axis from x = 2 to x = 5. Use six strips of equal width.
- 8 Estimate the shaded area. Use seven strips of equal width.



Extend

9 The curve $y = 8x - 5 - x^2$ and the line y = 2 are shown in the sketch. Estimate the shaded area using six strips of equal width.

10 Estimate the shaded area using five strips of equal width.

Answers

- **1** 34 units²
- 2 149 units²
- **3** 14 units²
- 4 $25\frac{1}{4}$ units²
- **5** 35 units²
- **6** 42 units²
- 7 $26\frac{7}{8}$ units²
- **8** 56 units²
- **9** 35 units²
- **10** $6\frac{1}{4}$ units²